

A Unique Approach to Development of Near-Infrared Fluorescent Sensors for in Vivo Imaging

Lin Yuan, Weiying Lin,* Sheng Zhao, Wensha Gao, Bin Chen, Longwei He, and Sasa Zhu

State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China

Supporting Information

ABSTRACT: Near-infrared (NIR) fluorescent sensors have emerged as promising molecular tools for imaging biomolecules in living systems. However, NIR fluorescent sensors are very challenging to be developed. Herein, we describe the discovery of a new class of NIR fluorescent dyes represented by 1a/1c/1e, which are superior to the traditional 7hydroxycoumarin and fluorescein with both absorption and emission in the NIR region while retaining an optically tunable

hydroxyl group. Quantum chemical calculations with the B3LYP exchange functional employing 6-31G(d) basis sets provide insights into the optical property distinctions between 1a/1c/1e and their alkoxy derivatives. The unique optical properties of the new type of fluorescent dyes can be exploited as a useful strategy for development of NIR fluorescent sensors. Employing this strategy, two different types of NIR fluorescent sensors, NIR-H₂O₂ and NIR-thiol, for H₂O₂ and thiols, respectively, were constructed. These novel sensors respond to H₂O₂ or thiols with a large turn-on NIR fluorescence signal upon excitation in the NIR region. Furthermore, NIR-H₂O₂ and NIR-thiol are capable of imaging endogenously produced H₂O₂ and thiols, respectively, not only in living cells but also in living mice, demonstrating the value of the new NIR fluorescent sensor design strategy. The new type of NIR dyes presented herein may open up new opportunities for the development of NIR fluorescent sensors based on the hydroxyl functionalized reactive sites for biological imaging applications in living animals.

■ INTRODUCTION

Fluorescence imaging is a very powerful technique for localization and dynamic monitoring of biomolecules in living systems.^{1–3} The development of new fluorescent imaging sensors has facilitated the recent significant advances in cell biology and medical diagnostic imaging.^{4–6} Near-infrared (NIR) light (650–900 nm) is advantageous to be employed in biological imaging due to minimum photodamage to biological samples, deep tissue penetration, and minimum interference from background autofluorescence by biomolecules in the living systems.^{7–9} However, small-molecule NIR fluorescent sensors are very challenging to be constructed. Thus, innovative strategies for development of NIR fluorescent sensors are actively sought after.

The traditional 7-hydroxycoumarins and fluorescein dyes contain a characteristic hydroxyl group (Figure 1), which can be modified to regulate their optical properties. This feature of the optically tunable hydroxyl group renders 7-hydroxycoumarins and fluorescein extensively employed in biochemical assays, optical sensing, and molecular optical imaging.¹⁰ However, the absorption and emission wavelengths of the classic 7-hydroxycoumarin and fluorescein dyes only locate in the UV to visible region. Thus, they are not amenable for living animal imaging, in which the absorption and emission in the NIR region are highly desirable.

In this study, we described the discovery of a new class of NIR fluorescent dyes represented by **1a**, **1c**, and **1e** (Figure 1).

Significantly, the new class of NIR fluorescent dyes is superior to the traditional 7-hydroxycoumarin and fluorescein with absorption and emission in the NIR region while retaining an optically tunable hydroxyl group. In other words, the new type of fluorescent dyes enjoys the advantages of integrating tunable optical properties with NIR absorption and emission. This unique feature can be exploited for development of NIR fluorescent sensors for living animal imaging applications. Based on the design strategy, two innovative NIR fluorescent sensors for H_2O_2 and thiols were constructed. We demonstrate the utility of the novel NIR sensors in living animal imaging, highlighting the value of the new NIR fluorescent sensor design strategy.

RESULTS AND DISCUSSION

Synthesis of Fluorescent Dyes 1a-g. Unexpectedly, treatment of chloro-substituted cyanine 2a or 2b with resorcin 3a in the presence of a base, NaH or triethylamine, at 50 °C for 4 h in DMF did not furnish the straightforward nucleophilic substitution product, but instead 2,3-dihydro-1H-xanthene-6-ol 1a or 1c (Scheme 1), respectively, was obtained. Similarly, compound 1e, the analogue of compound 1a with a chlorine atom nearby the phenolic alcohol, was also synthesized by the same route. The structures of compounds 1a, 1c, and 1e were

 Received:
 June 26, 2012

 Published:
 July 20, 2012

Figure 1. The chemical structures of the classic and new dyes bear an optically tunable hydroxyl group. The chemical structures and absorption/ emission wavelengths of the classic dyes, such as 7-hydroxycoumarin and fluorescein, and the new NIR dyes reported herein (represented by 1a, 1c, and 1e) with an optically tunable hydroxyl group.

Scheme 1. Structures and Synthesis of Compounds $1a-g^{a}$

^aConditions: (a) alkali, H₂O, and/or heating; (b) CH₃CH₂I, Cs₂CO₃; and (c) CH₃I, Cs₂CO₃.

Scheme 2. A Proposed Reaction Mechanism for the Unique Formation of 2,3-Dihydro-1*H*-xanthene-6-ol Dyes Represented by 1a

characterized by ¹H and ¹³C NMR and HRMS (ESI). Representative 2D COSY NMR spectra of compound 1c further confirms the structure (Figure S1 and its description).

To get insight into the likely mechanism of the formation of the new compounds exemplified by 1a, a number of control experiments were performed: 1) Compound 2a was reacted with resorcin 3a under the basic conditions at a lower temperature (25 °C) for 2 h to afford compound 4 (Schemes 2 and S1), the product arising from the straightforward nucleophilic substitution of chlorine atom; 2) The product 4 was isolated in pure form and further heated at 50 °C for 2 h in the presence of a base, resulting in formation of product 1a (Scheme S1). Thus, the results of these control experiments

Article

Scheme 3. Synthesis of Compounds 1c and 1d^a

"Using a rational synthetic route based on the retrosynthesis analysis (Scheme S5) to corroborate the structures of this new type of compounds. Conditions: (a) EtOH, AcOH, piperidine, reflux; (b) Ac₂O, 50 °C; (c) BBr₃, CH₂Cl₂, 0 °C.

Figure 2. Absorption (A) and fluorescence emission spectra (B) of compounds 1a (\triangle , blue), 1b (\blacksquare , green), 1c (\diamondsuit , purple), 1d (\bigstar , black), 1e (\bigcirc , red), 1f (\triangle , orange, open), and 1g (\square , green, open) (10 μ M) in pH 7.4 PBS/MeOH (1:1). (C) Fluorescence emission spectra of compounds 1a (\triangle , blue), 1b (\blacksquare , green), 1c (\diamondsuit , purple), 1d (\bigstar , black), and 1e (\bigcirc , red) (10 μ M) in pH 7.4 PBS/MeOH (1:1). The emission spectra were obtained by excitation at the maximum absorption wavelength (B) or 690 nm (C), respectively. (D) pH-dependence of the absorption spectra of compound 1a (10 μ M) with the arrows indicating the change of the absorption intensities with pH enhancement from 2.3 to 7.4.

suggest that compound 4 is the possible intermediate in the mechanistic pathway.

Based on the above key findings, a plausible mechanistic pathway for the formation of 2,3-dihydro-1H-xanthene-6-ol dyes represented by **1a** is proposed in Scheme 2. We hypothesized that under stringent conditions, cyanine **4** could lose its Fischer's base by a retro-Knoevenagel reaction to give a putative half cyanine enol intermediate **L**. This hypothesis is based on the chemistry of cyanine dye formation that a half cyanine enol intermediate could condensate with Fischer's base to yield a cyanine dye,¹¹ and the Knoevenagel-type condensation reaction is reversible. The enol intermediate **L** could then undergo cyclization and dehydration reactions to furnish a much more stable product **1a**. Although the enol intermediate **L** was not isolated likely due to the facile subsequent steps of cyclization and dehydration, the similar chloro-substituted half cyanine enol could be furnished through a retro-Knoevenagel reaction by heating cyanine 2a at 50 °C under the basic conditions (Schemes S2 and S3). This further supports the proposed mechanism.

Additionally, the chloro-substituted half cyanine enol generated by heating cyanine 2a at 50 °C under the basic conditions was isolated (Scheme S2). Then, the chlorosubstituted half cyanine enol in pure form was further treated with resorcin 3a in the presence of a base at 50 °C, which did not afford product 1a (Scheme S4). Thus, this observation excludes the possibility that chloro-substituted half cyanine enol is the intermediate in the formation of product 1a, in good agreement with the proposed mechanism as shown in Scheme 2. The conversion of compound 4 to the product 1a upon further heating at a higher temperature (Scheme S1) is interesting, indicating the delicate nature of cyanine chemistry that the reaction conditions can dramatically affect the structures of final products. Importantly, the formation of 2,3dihydro-1*H*-xanthene-6-ols **1a**, **1c**, and **1e** from cyanines **2a** and **2b** provides a unique pathway for the preparation of a wide variety of 2,3-dihydro-1*H*-xanthene-6-ol derivatives from the classic cyanines. It is worthy to note that this synthetic pathway, to our best knowledge, is unprecedented.

Compounds 1b and 1d (Scheme 1), the ethyloxy and methyloxy derivatives of compounds 1a and 1c, respectively, were synthesized as controls to investigate the role of the hydroxyl group on the modulation of absorption/emission profiles. Reaction of compound 1a or 1c with iodoethane or iodomethane, readily afforded compound 1b or 1d, respectively. In addition, we also prepared compounds 1f and 1g (Scheme 1), in which the hydroxyl/methoxy group is in the tetrahydroacridine ring. Compounds 1f and 1g could be used as references for compounds 1a-e to examine the potential effect of different heteroatoms at the X-position on the optical properties.

To further corroborate the structures of this new type of compounds, we wondered whether they could also be independently prepared by a "rational" synthetic route based on a retrosynthesis analysis (Scheme S5). We envisioned that the intermediate oxonium 8 is unstable, thus these new dyes may be synthesized in one pot without isolation of the intermediate 8. For a representative case, as shown in Scheme 3, reaction of commercially available hydroxylbenzaldehyde 6 and ketone 7 in EtOH with a few drops of AcOH and piperidine as the catalysts afforded a yellow residue, which was further treated with the commercially available Fisher aldehyde 5 in Ac_2O to give compound 1d. Removal of the methyl group of 1d by BBr₃ readily afforded compound 1c. To verify that the compound 1c synthesized from the different routes (unique route in Scheme 1 and rational route in Scheme 3) is the same compound, an equivalent mixture of them was taken via ¹H and ¹³C NMR spectra. As shown in Figures S2 and 3, the mixture shows a single NMR spectrum. The same phenomenon is observed for compound 1d (Figures S4 and 5). Furthermore, the mass, absorption, and emission spectra of compounds 1c and 1d synthesized from the different routes are essentially identical (Figures S6 and 7), further supporting that this class of new compounds can be obtained by different routes. Significantly, the observation that compounds 1c and 1d could be independently prepared by distinct synthetic routes (unique route in Scheme 1 and rational route in Scheme 3), further substantiating the structures of the new class of dyes.

Photophysical Properties of Fluorescent Dyes 1a-g. The absorption and emission profiles of compounds 1a-g are shown in Figure 2, and the photophysical data are compiled in Table 1. Gratefully, compound 1a displays both absorption and emission peaks in the NIR region with maximum at 690 and 716 nm, respectively, in pH 7.4 PBS/MeOH (1:1). Importantly, compound 1a has a fluorescence quantum yield of 0.36, which is relatively large for a NIR dye. Furthermore, the Stokes shift of compound 1a is 26 nm, comparable to typical cyanines. Thus, compound 1a appears to be a promising NIR dye. On the other hand, the maximal absorption and emission peaks of the reference 1b are at 656/606 and 677 nm, respectively, which are significantly blue-shifted when compared to those of compound 1a. Furthermore, the fluorescence quantum yield of compound 1b is only 0.007, much less than that of compound 1a. This is attributed to the alkyloxy substituent of 1b which reduces the electron-donating ability of the oxygen atom^{1c} and thus forbids the formation of the zwitterionic resonance form. Thus, these data suggest that the

Table 1. Photophysical Data of the Dyes 1a-g in pH 7.4 PBS/MeOH (1:1)

	$\lambda_{\rm abs}/{\rm nm}^a$	$\varepsilon_{\rm max}~(10^4~{ m M}^{-1}~{ m cm}^{-1})$	$\lambda_{ m em}/{ m nm}^b$	$\Phi_{f}^{\ c}$	pK _a ^d
1a	690	7.9	716	0.36	5.6
1b	656/608	5.4/4.9	677	0.007	-
1c	690	8.7	716	0.37	5.6
1d	654/608	4.9/5.3	677	0.006	-
1e	698	7.9	718	0.30	4.5
1f	454	1.5	565	0.009	5.1; 7.4
1g	454	2.0	565	0.006	5.1

^{*a*}The maximal absorption of the dye. ^{*b*}The maximal emission of the dyes. ^{*c*} Φ_f is the relative fluorescence quantum yield estimated by using indocyanine green (ICG, $\Phi_f = 0.13$ in DMSO) for **1a**–**e** or rhodamine 6G ($\Phi_f = 0.95$ in water) for **1f**–**g** as a fluorescence standard.¹⁴ ^{*d*}The pK_a was calculated according to the Henderson–Hasselbach-type mass action equation.¹²

optical properties of new NIR dye 1a can be regulated by alkylation on the hydroxyl group. Like compounds 1a and 1b, the absorption and emission spectra of dyes 1c-d exhibit the similar changes. Interestingly, compounds 1b/1d exhibit a shoulder peak in the emission profiles, which may be attributed to the existence of distinct species in the ground state due to charge localization.^{81,m} Notably, compounds 1a, 1c, and 1e display strong fluorescence when excited at 690 nm, while compounds 1b and 1d show almost no fluorescence when excited at 690 nm (Figure 2C). The large fluorescence difference (>200-fold) between these fluorophores (1a/1e vs 1b or 1c vs 1d) implies a method to develop a new NIR fluorescence turn-on switch by breaking the C–O bond through a chemical reaction.

To further understand the role of the hydroxyl group playing on the photophysical properties, we investigated the pH effect on the absorption/emission profiles of compound 1a. As shown in Figure 2D, with the enhancement of pH from 2.3 to 7.4, the absorption bands at around 656/608 nm, ascribed to the phenolic form of 1a, undergo a red-shift to a peak at around 690 nm, attributed to the phenolate form of 1a (Scheme S6). There is a well-defined isosbestic point at 662 nm in the absorption spectra, indicating the equilibrium of the phenolic and phenolate forms of 1a. The pH-dependence of the emission profiles of compound 1a is consistent with that of the absorption profiles. When excited at 690 or 645 nm, enhancement of pH from 2.3 to 7.4 leads to a fluorescence turn-on (Figure S8) or ratiometric (with a red-shift) response (Figure S9), respectively. The pK_a of compound 1a was calculated to be 5.6 based on the Henderson-Hasselbach-type mass action equation.¹² Like compound 1a, compounds 1c and 1e also exhibit the absorption and emission peaks in the NIR region (Figure 2 and Table 1) and show the similar pHdependent absorption (Figures S10 and S12) and fluorescence (Figures S11 and S13) changes. However, the pK_a of compound le was calculated to be 4.5, which is significantly lower when compared to that of compound 1a. This indicates that the pK_a of 2,3-dihydro-1H-xanthene-6-ol-based NIR merocyanine dyes can be readily tailored by introducing electron-withdrawing groups nearby the phenolic alcohol.

We also examined the absorption/emission properties of tetrahydroacridines 1f and 1g (Figure 2 and Table 1). However, compounds 1f and 1g show absorption and emission only in the visible region in pH 7.4 PBS/MeOH (1:1). This phenomenon may be ascribed to the pH-dependent equili-

brium between the neutral and the ionic forms of push-pull chromophores **1f** and **1g** (Scheme S7). In pH 7.4 PBS/MeOH (1:1), the neutral form is dominant. The neutral form may have relatively short absorption/emission wavelengths due to the weak push-pull system.¹³ However, with the decrease of pH values, the ionic forms which have the strong push-pull system may become dominant, and a red-shift in absorption/emission is thus observed (Figures S14–15). Since tetrahydroacridines **1f** and **1g** only exhibit emission in the visible region at pH 7.4 and we were interested in the development of NIR dyes with potential for *in vivo* imaging applications, we decided to focus on 2,3-dihydro-1*H*-xanthene-6-ols **1a**, **1c**, and **1e** for further studies, as they have emission in the NIR region at pH 7.4.

Significantly, the above findings that there is a striking distinction between the optical properties of compounds **1a/1e** vs **1b** or **1c** vs **1d** indicate that the new class of NIR fluorescent dyes represented by **1a**, **1c**, and **1e** may be exploited as a novel strategy to design NIR fluorescent sensors by easy modifications on the hydroxyl group. By sharp contrast, regulation of the emission properties of the classic cyanines by photoinduced electron transfer (PET) is very challenging based on the Rehm–Weller equation.⁹

We further examined the photophysical properties of compounds 1a, 1c, and 1e in biological media. Although compounds 1a, 1c, and 1e appear to have limited solubility in water, they exhibit micromolar solubility in biological media. For example, compounds 1a, 1c, and 1e have a solubility of approximately 6, 10, or 6 μ M, respectively, in pure newborn calf serum (without addition of any co-organic solvent) estimated from the corresponding absorption spectra (Figure S16). In addition, these NIR dyes show strong fluorescence in pure newborn calf serum solution (Figure S17) with good fluorescence quantum yields over 0.2 (Table S1). The living cell fluorescence images and in situ (in cellulo) emission spectra of compounds 1a, 1c, and 1e are shown in Figure S18. These results indicate that the new NIR dyes are cell permeable and have strong NIR fluorescence in living cells. Notably, the in situ (in cellulo) excitation and emission spectra of compounds 1a, 1c, and 1e in HeLa cells resemble those of compounds 1a, 1c, and le in pH 7.4 PBS/THF (1:1) (Figures S19-21), suggesting that the NIR emission of compounds 1a, 1c, and 1e in living cells can be attributed to the single molecule of dyes. To demonstrate the feasibility of developing water-soluble NIR dyes, we have further synthesized compound 1h, which bears several water-soluble groups (Schemes 4 and S8). As

expected, dye 1h is soluble in pure PBS and newborn calf serum (without addition of any co-organic solvent) with a solubility of at least 2 mM in PBS and 3 mM in newborn calf serum. The spectral properties of 1h in pure PBS and newborn calf serum (Figures S22–23 and Table S1) resemble those of 1a.

Theoretical Calculations. To get insight into the optical properties of the new functional dyes 1a-g, density functional theory (DFT) calculations with the B3LYP exchange functional employing 6-31G(d) basis sets using a suite of Gaussian 09 programs were performed. Figures 3 and S24-28 show the representative optimized structures and molecular orbital plots (LUMO and HOMO) of the dyes 1a-g. The C-C (N or O) bond lengths (in pm) of 1a-g determined by DFT calculations are depicted in Tables S2-11. In the case of 1a (phenolate form), the indolium moiety is essentially coplanar and conjugated with the 2,3-dihydro-1H-xanthene core (Figure 3). It is worthy to note that all the C-C bond lengths of the conjugated 2,3-dihydro-1H-xanthene-indolium backbone are very similar, at around 140 pm (Table S2). This value is the intermediate between the typical carbon-carbon single (154 pm) and the double (134 pm) bonds, attributed to the strong electronic delocalization and the partial decrease in the carbon-carbon bond length alternation (BLA, difference between consecutive single and double bonds) along the π conjugated system.¹³ This is further corroborated by the studies of the terminal C-N and C-O bond lengths in the conjugated system. The bond length of C14-N15 is 138 pm, which is the intermediate between the lengths of C-N bond (single bond, around 147 pm) and the iminium C=N (double bond, around 128 pm). The bond length of C1-O17 is 127 pm, which is relatively closer to C=O (double bond, around 121 pm) than C-O (single bond, around 144 pm), indicating that the O17 atom contributes pronouncedly to the π -conjugated system of the dye 1a (phenolate form). The π electrons on the HOMO of 1a (phenolate form) are mainly located on the whole π conjugated 2,3-dihydro-1H-xanthene-indolium framework (including the O17 atom), but the LUMO is mostly positioned at the center of the conjugated 2,3-dihydro-1H-xanthene-vinyl bridge including the N15 atom (Figure 3), where the BLA is minimal. This distribution pattern of the π electrons on the HOMO/LUMO is a typical feature of cyanine dyes. Cyanines in the "cyanine limit" state feature a relatively sharp and intense absorption band in the NIR spectral range in light of the reduced vibronic contribution in the nonalternating (minimal BLA) structure.¹³ Thus, the DFT calculation results are consistent with the absorption spectrum of 1a (Figure 2A). The C1–O17 bond length of the compound 1b is 135.3 pm (Table S3), which is longer than that (126.8 pm) of C1–O17 of the compound 1a (phenolate form). This weakens the $p-\pi$ conjugation between the O17 atom and the π -conjugated xanthene-indolium framework, and the energy levels of both HOMO and LUMO of the compound 1b decrease relative to those of the compound 1a (Figure 3). Upon close examination reveals that the π electrons on the HOMO and LUMO of 1b are primarily located on the π -conjugated xanthene-indolium framework and the conjugated 2,3-dihydro-1H-xanthene-vinyl bridge, respectively. When compared to compound 1a, the O17 atom of compound 1b contributes less to the HOMO/LUMO. This suggests that the alkylation on the O17 atom indeed decreases the electron-donating ability of the oxygen atom, and compound 1b loses its "cyanine limit" structure to some extent. In other words, the alkylation on O17 atom hinders the resonance between the O17 atom and the xanthene-indolium core. In addition, time-dependent DFT (TDDFT) calculations indicate that the excitation HOMO-LUMO energy gap between the S_0 state and the S_1 excited state of 1b (2.27 or 2.09 eV based on the optimized S_0 or S_1 state geometry) is markedly higher than that of **1a** (phenolate form) (2.13 or 2.02

Figure 3. DFT optimized structures and molecular orbital plots (LUMO and HOMO) of dyes 1a (phenolate form), 1b, and 1e (phenolate form) in MeOH based on the optimized ground-state geometry (S_0). In the ball-and-stick representation, carbon, nitrogen, and oxygen atoms are colored in gray, blue, and red, respectively.

eV based on the optimized S_0 or S_1 state geometry) (Figure S24), which is in good agreement with the observation that the measured absorption and emission wavelength of **1b** is shorter than that of **1a**. The pH-dependence of the absorption spectra of compound **1a** (Figure 2D) can be explained in a similar manner (Figure S25 and Tables S4). In addition, the drastic distinction between the optical properties of the dyes **1c** and **1d** also can be rationalized analogously (Figure S26 and Tables S5 and S6).

The dye le is the analogue of la with an electronwithdrawing chlorine (Cl18) nearby the O17 atom. However, the energy levels of HOMO/LUMO of 1e (phenolate form) are relatively lower than those of 1a (phenolate form) due to the electron-withdrawing effect of chlorine, which stabilizes the aromatic system by electron delocalization (Figure 3). This may explain the above observation that the dye 1e has a lower pK_a value than dye 1a. In addition, TDDFT calculations indicate that the presence of the electron-withdrawing chlorine on the aromatic system also decreases the excited-state energy (about 0.03 eV), which corresponds to a bathochromic shift of 7 nm in the absorption maximum of **1e** with respect to **1a** (Table 2). Interestingly, this red-shift between compounds 1e and 1a obtained based on the TDDFT calculations is in good agreement with the value (8 nm) acquired experimentally (Table 2).

Dyes **If** and **1g**, the tetrahydroacridine derivatives, show the pH-dependent equilibrium between the neutral and the ionic forms of push-pull chromophores (Scheme S7). DFT calculation indicates that the C9–C11 bond (148 pm) in the neutral form of the dye **1f** is relatively closer to the carbon-carbon single bond (154 pm) than the carbon-carbon double bond (134 pm) (Figure S27, Table S8) and that the π electrons on the LUMO of **1f** (neutral form) are principally located on the whole π -conjugated tetrahydroacridine moieties, but the HOMO is mostly positioned at the indolium-vinyl bridge moieties. Thus, at pH 7.4, when compared to **1a** (phenolate form), **1f** (neutral form) loses the cyanine limit to some extent. By contrast, in the ionic form of the dye **1f**, all the C-C bond lengths of the conjugated tetrahydroacridine-indolium back-

Table 2. TDDFT Excitation Energies (and Corresponding)
Excitation/Absorption Wavelengths) and Experimental
Absorption Wavelengths of the Dyes 1a–g in MeOH

		theory ^a		experiment
	form	ΔE , eV^b	$\lambda_{\rm abs'}$ nm	$\lambda_{\rm abs'}$ nm
1a	phenolate	2.13	583	690
	phenolic	2.29	542	608
1b		2.27	547	606
1c	phenolate	2.13	583	690
	phenolic	2.29	543	608
1d		2.27	546	606
1e	phenolate	2.10	590	698
	phenolic	2.27	545	610
1f	neutral	2.59	479	454
	ionic form	2.33	533	578
1g	neutral	2.58	480	454
	ionic	2.32	535	582

^aThe calculations are determined using B3LYP/6-31G(d) exchange– correlation functionals and basis sets. ^bThe excitation HOMO– LUMO energy gap.

bone are very similar, at around 140 pm (Figure S27 and Table S9), ascribed to the strong electronic delocalization and the partial decrease in the carbon-carbon BLA along the π conjugated system.¹³ Furthermore, the π electrons on the HOMO of 1f (the ionic form) are mainly located on the whole π -conjugated tetrahydroacridine-indolium framework, but the LUMO is mostly positioned at the center of the conjugated tetrahydroacridine-vinyl bridge (Figure S27), where the BLA is minimal. In addition, TDDFT calculations indicate that the excitation HOMO-LUMO energy gap of 1f (neutral form, 2.59 eV) is significantly higher than that of 1f (ionic form, 2.33 ev) (Table 2), which is in good agreement with the observation that 1f exhibits a red-shift at lower pH values (Figure S14). The pH-dependent absorption spectra of 1g (Figure S15a) also can be explained in a similar manner (Figure S28 and Tables S10-11).

Scheme 5. Design and Synthesis of NIR Fluorescent Turn-on H₂O₂ Sensor NIR-H₂O₂

Figure 4. (a) Fluorescence spectra of **NIR-H₂O₂** (1 μ M) in the presence of various concentrations of H₂O₂ (0–250 μ M) in phosphate buffer (pH 7.4, 1% DMSO) with excitation at 690 nm. Inset: Fluorescence intensity of **NIR-H₂O₂** (1 μ M) at 708 nm vs H₂O₂ concentration (0–250 μ M). (b) Fluorescence intensity (at 708 nm) of **NIR-H₂O₂** (1 μ M) with excitation at 690 nm in the presence of various species (250 μ M): 1, blank; 2, H₂O₂; 3, CH₃COOOH; 4, HOCl; 5, O₂⁻⁻; 6, NO; 7, ·OH; 8, Fe³⁺; 9, GSH; 10, NO₂⁻⁻; 11, NO₃⁻⁻; 12, TBHP; 13, vitamin C; 14, ·O'Bu.

TDDFT calculations suggest that the maximal absorption bands of 1a-g are attributed to the $S_1 \leftarrow S_0$ transition and that the maximal emission bands of 1a-b are attributed to the $S_0 \leftarrow$ S₁ transition. The calculated maximum of absorption or emission is shorter than that obtained experimentally (Table 2 and Figure S24), which is consistent with the previous report that TDDFT calculations may underestimate the excitation or emission wavelength due to the limitation of the exchangecorrelation functional.¹⁵ However, the deviations between the experimental values and TDDFT data are often systematic and can be corrected using appropriate linear scaling approaches. Indeed, for 1a-g, as illustrated in Figure S29, the underestimated absorption maximum is rather systematic, and the linear regression is characterized by a correlation coefficient close to one. The experimental values and TDDFT data can be well correlated by the following expression:

$$\lambda_{\text{experiment}} = -618.532 + 2.245 \times \lambda_{\text{theory}} \tag{1}$$

Development of a New NIR Fluorescent Turn-on Sensor for H_2O_2 and the Applications for Biological Imaging in Living Mice. Reactive oxygen species (ROS) play important roles in many physiological and pathological processes.¹⁶ Hydrogen peroxide (H_2O_2), one of the key ROS, is produced by activation of NADPH oxidase complexes during cellular stimulation with cytokines, neurotransmitters, and peptide growth.^{16e-h} H_2O_2 serves as a signaling molecule in a wide variety of signaling transduction processes, an oxidative stress marker in aging and disease, and a defense agent in response to pathogen invasion.^{16e-h,17} However, aberrant production of H_2O_2 is associated with various diseases including cancer, diabetes, neurodegenerative disorders, and cardiovascular.^{18,19} Thus, it is of importance to monitor generation and dynamic fluctuation of H_2O_2 in living systems. The construction of fluorescent sensors for H_2O_2 has attracted great attention.^{20,21} However, the development of fluorescent H_2O_2 sensors with both maximal absorption and emission wavelengths in the NIR region (650–950 nm) is very challenging, although it is highly desirable for biological imaging of H_2O_2 in living animals.

Herein, employing the approach established above based on the optical property studies of the new type of NIR fluorescent dyes, we present NIR-H₂O₂ (Scheme 5) as an innovative NIR fluorescent sensor for H₂O₂. The key features of NIR-H₂O₂ include absorption and emission in the NIR region, a very large fluorescence turn-on response, high selectivity for H₂O₂, and suitability for imaging H₂O₂ in both living cells and living mice.

Figure 4a shows the changes in the fluorescence emission spectra when H_2O_2 was added in phosphate buffer containing the sensor NIR- H_2O_2 (1 μ M). The free sensor is almost nonfluorescent in the absence of H_2O_2 when excited at around 690 nm. However, upon addition of increasing concentrations of H_2O_2 (0–250 μ M), a large fluorescence turn-on response (up to 180-fold enhancement at 708 nm) was observed (Figure 4a). Notably, this is a great enhancement factor for an NIR fluorescent sensor. The changes in the absorption spectra (Figure S30) are consistent with the variations in the emission profiles. Notably, the NIR sensor NIR- H_2O_2 can respond to H_2O_2 in pure newborn calf serum (without addition of any coorganic solvent) (Figure S31).

Kinetics measurements of reaction of NIR-H₂O₂ (1 μ M) with H₂O₂ (100 μ M) under the pseudo-first-order conditions give an observed rate constant of $k_{obs} = 2.95 \times 10^{-3} \text{ s}^{-1}$. As exhibited in Figure 4b, NIR-H₂O₂ is highly selective to H₂O₂ over other typical ROS and biorelevant species, such as

Figure 5. Images of HeLa cells treated with the sensor NIR-H₂O₂. (a) Brightfield image of HeLa cells incubated with only NIR-H₂O₂ (1 μ M) for 30 min; (b) fluorescence image of (a); (c) brightfield image of HeLa cells incubated with NIR-H₂O₂ (1 μ M) for 30 min and then further treated with H₂O₂ (10 μ M); and (d) Fluorescence image of (c).

Figure 6. Imaging of H_2O_2 in living cells. (a) Fluorescence image of RAW 264.7 macrophages cells costained with **NIR-H_2O_2** for 60 min from red channel. (b–h) Fluorescence images of RAW 264.7 macrophages cells stimulated with PMA (3.0 μ g/mL) and costained with **NIR-H_2O_2**, Hoechst 33258 (4.5 μ M), and MitoTracker green for 60 min: (b) from blue channel (nuclear staining); (c) from green channel (mitochondria staining); (d) from red channel; (e) overlay of the green and red channels; (f) overlay of the blue and green channels; (g) overlay of the blue and red channels; and (h) overlay of the blue, green, and red channels.

Figure 7. Representative fluorescent images (pseudo-color) of *in vivo* H_2O_2 production from the peritoneal cavity of the mice with NIR-H₂O₂ during an LPS-mediated inflammatory response: (a) Neither LPS nor NIR-H₂O₂ was injected for the negative control; (b) saline was injected in the ip cavity of mice, followed by ip injection of NIR-H₂O₂ (160 nanomoles); and (c) LPS was injected into the peritoneal cavity of the mice, followed by ip injection of NIR-H₂O₂ (160 nanomoles); and (c) LPS was injected into the peritoneal cavity of the mice, followed by ip injection of NIR-H₂O₂ (160 nanomoles). The mice were imaged using a FMT 2500 LX quantitative tomography *in vivo* imaging system with an excitation filter of 670 nm and an emission range of 690–740 nm 30 min after the NIR-H₂O₂ injection. (d) Quantification of fluorescence emission intensity from the abdominal area of the mice of groups a–c.

CH₃COOOH, HClO/⁻OCl, O_2^{-} , NO, ·OH, Fe³⁺, GSH, NO₂⁻, NO₃⁻, *tert*-butyl hedroperoxide (TBHP), vitamin C, and ·O^tBu. The high selectivity and the sensing mechanism of the sensor **NIR-H₂O₂** to H₂O₂ may be attributed to the unique chemical properties of H₂O₂, as described previously by Chang's group.^{20d}

We proceeded to evaluate the ability of the sensor NIR-H₂O₂ to operate in live cells. HeLa cells incubated with NIR-H₂O₂ (5 μ M) for 30 min at 37 °C provide almost no fluorescence (Figure 5b). However, when the living HeLa cells loaded with NIR-H₂O₂ were further treated with H₂O₂, they gave strong fluorescence (Figure 5d). These results imply that NIR-H₂O₂ is cell membrane permeable and responsive to H₂O₂ in the living cells. In addition, the *in situ* (in cellulo) emission spectrum of the sensor NIR-H₂O₂ in the presence of H₂O₂ in HeLa cells resembles to that of compound 1e in pH 7.4 PBS/THF (1:1) (Figure S32), suggesting that the NIR emission of the sensor NIR-H₂O₂ in living cells can be attributed to the single molecule state.

Article

Encouraged by the above promising results, we decided to further examine the feasibility of the sensor NIR-H₂O₂ to detect endogenously produced H₂O₂ in living macrophage cells. When stimulated by phorbol myristate acetate (PMA), macrophage cells may produce endogenous H₂O₂.²² The living RAW264.7 macrophage cells loaded with only the NIR sensor NIR-H₂O₂ (1 μ M) display almost no fluorescence (Figure 6a). However, the macrophage cells coincubated with PMA (3.0 μ g/mL) and the sensor NIR-H₂O₂ (1 μ M) exhibit a dramatic

Scheme 6. Design and Synthesis of NIR Fluorescent Turn-on Thiol Sensor NIR-Thiol

enhancement in the red emission (Figure 6d). These data indicate that the new NIR sensor NIR-H₂O₂ is capable of fluorescent imaging of endogenously produced H₂O₂ in the living RAW264.7 macrophage cells. Notably, the MTT assays (Figure S33)²⁸ indicate that NIR-H₂O₂ of concentrations below 60 μ M have no marked cytotoxicity. In addition, the mitochondria staining experiments (Figure 6c,e,h, and Figure S34) suggest that the sensor mainly associates with the mitochondria of RAW264.7 macrophage cells.

The major advantage of the new NIR- H_2O_2 over the sensors based on traditional 7-hydroxycoumarin and fluorescein is that our NIR-H₂O₂ has both absorption and emission in the NIR region. Thus, the unique NIR properties of NIR-H₂O₂ render NIR-H₂O₂ highly favorable for fluorsecence imaging of endogenously produced H₂O₂ in living animals. To examine this possibility, the sensor was treated with living mice. The H₂O₂ production in vivo was generated by activated macrophages and neutrophils in a lipopolysaccharide (LPS) model of acute inflammation.²³ The ICR mice were divided into three groups: Group one was untreated as the control group; the second group was given saline (400 μ L) in the peritoneal cavity, followed by intraperitoneal (ip) injection with the sensor NIR- H_2O_2 (160 nanomoles); and the third group was given an ip injection of LPS (1 mg in 400 μ L saline) and followed by ip injection with the sensor NIR- H_2O_2 (160 nanomoles) after 4 h. The mice were anaesthetized, and the abdominal fur was removed. The mice were imaged using a FMT 2500 LX quantitative tomography in vivo imaging system 30 min after the sensor injection. The mice treated with both LPS and the sensor exhibit a significantly higher fluorescence readout (pseudo-color) (Figure 7c) than the mice untreated (Figure 7a) or treated with only the sensor (Figure 7b). The fluorescent intensity from the abdominal area of the mice was quantified, and the data indicate that the mice loaded with LPS and the sensor have approximately 10- and 20-fold higher fluorescence intensity than the mice loaded with saline and the sensor and the mice loaded with saline, respectively (Figure 7d). Thereby, these results demonstrate that the new NIR sensor NIR-H₂O₂ is suitable for imaging endogenously produced H₂O₂ in the living animals.

Development of a Novel NIR Fluorescent Turn-on Sensor for Thiols and the Applications for Biological Imaging in Living Mice. To further test the robust nature of the approach for NIR sensor development, we constructed **NIR-thiol** (Scheme 6) as a novel NIR fluorescent thiol sensor. Small molecular weight biological thiols play a critical role in many biological processes. However, abnormal levels of thiols are implicated in a variety of diseases including liver damage, skin lesions, and slowed growth.^{24,25} Thus, it is of high interest to monitor biological thiols. A number of fluorescent thiol sensors have been developed.²⁶ However, the applications of them have been largely limited to cell culture, thin specimens, and blood specimens, owing to the need for ultraviolet or visible light excitation. Thus, the development of NIR fluorescent thiol sensors with both absorption and emission in the NIR for imaging of thiols in living mice remains a major challenge in the field of optical imaging. Toward this end, we prepared compound **NIR-thiol** as a novel candidate of NIR fluorescent thiol sensor by modifications on the hydroxyl group of NIR dye **1a** with 2,4-dinitrobenzenesulfonate moiety²⁷ (Scheme 6) for optical imaging of endogenous thiols in living mice for the first time.

As designed, the free sensor **NIR-thiol** is essentially nonfluorescent in PBS buffer (Figure 8). However, the addition

Figure 8. Fluorescence spectra of **NIR-thiol** (10 μ M) in the presence of various concentrations of Cys (0–70 μ M) in pH 7.4 PBS/CH₃CN (7:3) with excitation at 690 nm. Inset: Fluorescence intensity of **NIR-thiol** (10 μ M) at 716 nm vs Cys concentration (0–70 μ M).

of representative thiol, cysteine (Cys), elicited a dramatic change in the fluorescence spectra. A strong new emission peak at 716 nm appeared with a 50-fold enhancement. As displayed in the inset of Figure 8, low-micromolar thiols can be readily detected. Thus, the sensor should be sensitive enough to monitor intracellular thiols, which typically are in the millimolar level. The changes in the absorption spectra (Figure S35) are consistent with the variations in the emission profiles. The time course of the fluorescence intensity at 716 nm in the absence or presence of Cys was exhibited in Figure S36. Upon introduction of Cys, a significant enhancement in the emission intensity was noted, and the intensity essentially reached maximum within 60 s. This indicates that NIR-thiol responds very rapidly to thiols, and the sensor may have potential for monitoring of thiols in real time. Notably, the free sensor NIRthiol is stable in the assay conditions over 24 h (Figure S36B), and the free sensor in the solid form can be stored for more than one year. As shown in Figure S37, NIR-thiol is highly selective to typical small molecular weight biological thiols (Cys, Hcy, and GSH) over other biorelevant species, such as Phe, Gly, Arg, Lys, Tyr, Leu, glucose, Ser, and Val, suggesting

Figure 9. (a–c) Live Bel 7702 cells co-incubated with **NIR-thiol** (5 μ M) and Hoechst 33258 (4.5 μ M) for 30 min. (a) Emission from the blue channel (nuclear staining); (b) emission from the red channel; and (c) overlay of the blue and red channels. (d) Fluorescence image (red channel) of Bel 7702 cells pretreated with N-ethylmaleimide (1 mM) for 30 min and then incubated with **NIR-thiol** (5 μ M) for 30 min.

Figure 10. Representative fluorescence images (pseudo-color) for the mice ip injected with a different amount [(a) 0, (b) 20, (c) 40, or (d) 160 nanomoles] of NIR-thiol. (e) Quantification of the fluorescence intensities from the mice (ip) injected with a different amount (0, 20, 40, or 160 nanomoles) of NIR-thiol. The images were obtained 10 min after the injection of NIR-thiol into the ip cavity of the mice. The mice were imaged using a FMT 2500 LX quantitative tomography in vivo imaging system, with an excitation filter of 670 nm and an emission filter of 690–740 nm.

that the sensor is promising for applications in living systems. Furthermore, **NIR-thiol** can respond to thiols in pure newborn calf serum solution (without addition of any co-organic solvent) (Figure S38). The sensing mechanism of the sensor **NIR-thiol** can be attributed to the cleavage of the dinitrophenyl moiety by thiols.²⁷

To assess the ability of the sensor NIR-thiol for NIR imaging of thiols in living cells, the sensor was incubated with living HeLa or Bel 7702 cells, and bright fluorescence was observed (Figures 9b, S39B). By contrast, in a control experiment, the HeLa or Bel 7702 cells were pretreated with N-ethylmaleimide (a thiol-reactive agent) and further incubated with NIR-thiol, where almost no fluorescence was noted (Figures 9d, S39D), suggesting the selective reaction of the sensor with thiols. Thus, the sensor appears to be cell membrane permeable and capable of NIR imaging of thiols in living cell. The NIR bioimaging is advantageous over visible bioimaging in terms of negligible background fluorescence of native cellular species. The in situ (in cellulo) emission spectrum of the sensor NIR-thiol in HeLa cells is very similar to that of compound 1a in pH 7.4 PBS/ THF (1:1) (Figure S40), suggesting that the NIR emission of NIR-thiol in living cells can be attributed to the single molecule state. In addition, the MTT assays (Figure S41)²⁸ indicate that NIR-thiol of concentrations below 50 μ M does not show noticeable cytotoxicity.

Thus, the prominent features of **NIR-thiol** include NIR absorption and emission, rapid response, high sensitivity, excellent selectivity, good cell membrane permeability, and low cytotoxicity. These desirable attributes prompted us to further examine the suitability of the sensor for visualizing endogenous thiols in living animals. A different amount (0, 20, 40, or 160 nanomoles) of **NIR-thiol** was injected into the ip cavity of mice. The mice were imaged using a FMT 2500 LX quantitative tomography *in vivo* imaging system 10 min after the **NIR-thiol** injection. As shown in Figure 10b, strong

fluorescence (pseudo-color) was noted for the mice injected with 20 nanomoles of NIR-thiol, whereas almost no fluorescence was observed in the control mice without being injected with the sensor (Figure 10a). In addition, the mice injected with a higher amount (40 or 160 nanomoles) of NIRthiol provided brighter fluorescence (pseudo-color) (Figure 10c,d). Quantification of the fluorescence intensities from the mice (ip) injected with a different amount (0, 20, 40, or 160 nanomoles) of NIR-thiol reveals a dose-dependent increase in signal as a function of the sensor amount (Figure 10e). A very large signal-to-noise contrast ratio (ca. 700-fold enhancement) was observed for the mice injected with 20 nanomoles of NIRthiol. In addition, the signal-to-noise contrast ratio jumped to ca. 2900- or 7400-fold enhancement when the mice were injected with 40 or 160 nanomoles of NIR-thiol, respectively. Taken together, these data indicate that NIR-thiol is a robust imaging agent for visualizing endogenous thiols in the context of living mice for the first time.

Article

Previously, we have developed a class of NIR dyes, Changsha (CS) NIR dyes, which are superior to the traditional rhodamine dyes with both absorption and emission in the NIR region while retaining the rhodamine-like fluorescence on-off switching mechanism.⁸ⁿ Notably, there are drastic distinctions between the CS NIR dyes and the novel type of NIR dyes reported herein. First, the design strategies for these two types of dyes are largely different. The CS NIR dyes were rationally designed based on the "integration" of a benzoic acid moiety with a merocyanine unit inspired by the fact that the electronic pulling pathway for the CS NIR functional dye spirocyclization highly resembles that of the traditional rhodamine dye spirocyclization. By sharp contrast, the new type of NIR dyes described herein was constructed based on the new reaction between chloro-substituted cyanine with resorcin under basic conditions. In addition, the mechanistic studies reveal that the new reaction likely involves a cascade sequence of putative

retro-Knoevenagel, cyclization, and dehydration. Second, the **CS** NIR dyes may be "considered" as the NIR surrogates of the classic rhodamine dyes. By contrast, the new type of NIR dyes described herein appear to be the NIR surrogates of the traditional fluorescein/7-hydroxycoumarin dyes. Thus, more importantly, the distinction between the **CS** NIR and the new NIR dyes is in their use as platforms for fluorescent sensor design. Just like the rhodamine platform, 5^{j-1} the **CS** NIR dyes are mainly applicable for the design of fluorescent sensors based on the carboxylic acid functionalized reactive sites (Scheme 7).

Scheme 7. Schematic Illustration of the New NIR and CS NIR dyes, Fluorescein/7-Hydroxycoumarin, And Rhodamine As the Platforms for Fluorescent Sensor Design^{*a*}

^{*a*}Notably, the relationship between the new NIR and **CS** NIR dyes is just like that between fluorescein/7-hydroxycoumarin and rhodamine. They are essentially complementary but not replaceable.

Whereas, just like the fluorescein/7-hydroxycoumarin plat-form,^{51,10,20d} the new NIR dyes are primarily applicable for the design of fluorescent sensors based on the hydroxyl functionalized reactive sites (Scheme 7). For instance, the CS NIR dyes could be employed to design a NIR fluorescent sensor for HOCl based on thiosemicarbazide chemistry (a carboxylic acid functionalized reactive site),⁸ⁿ but they are not suitable for development of NIR fluorescent sensors for H_2O_2 and thiols based on the borate chemistry^{20d} and 2,4-dinitrobenzenesulfonate chemistry²⁷ (hydroxyl functionalized reactive sites). On the other hand, the new NIR dyes could be used to construct NIR fluorescent sensors for H₂O₂ and thiols based on borate chemistry^{20d} and 2,4-dinitrobenzenesulfonate chemistry² (hydroxyl functionalized reactive sites) as described in this work, but they are not applicable for development of an NIR fluorescent sensor for HOCl based on thiosemicarbazide chemistry (a carboxylic acid functionalized reactive site).⁸ⁿ In other words, from the fluorescent sensor design point of view, the novel type of NIR and the CS NIR dyes have different scopes and limitations. They are essentially complementary but not replaceable, just like the relationship between fluorescein/ 7-hydroxycoumarin and rhodamine.

CONCLUSION

Fluorescence microscopy with synthetic sensors offers a powerful technique for studying biomolecules in their native environment. NIR fluorescent sensors are advantageous over visible light fluorescent sensors as NIR light leads to minimum photodamage to biological samples, deeper tissue penetration, and minimum interference from background autofluorescence. Thus, robust strategies for design of NIR fluorescent sensors are highly sought after. In this study, we have successfully developed a new approach for ready construction of NIR fluorescent sensors based on a novel class of NIR dyes represented by **1a**, **1c**, and **1e**, which are superior to the traditional 7-hydroxycoumarin and fluorescein while retaining an optically tunable hydroxyl group. In addition, we have performed quantum chemical calculations with the B3LYP exchange functional employing 6-31G(d) basis sets to shed light on the structure-optical properties of the new class of NIR dyes. Moreover, we have demonstrated that the approach can be easily employed to develop different types of NIR fluorescent sensors for biological imaging applications in the living animals: NIR-H₂O₂ for endogenously produced H_2O_2 and NIR-thiol for endogenous thiols, highlighting the value of the new NIR fluorescent sensor design approach. We expect that the new NIR dyes described herein will serve as useful fluorescent platforms for the development of fluorescent sensors based on the hydroxyl functionalized reactive sites, a useful complement to our previously reported CS NIR dyes, which are mainly applicable for the design of fluorescent sensors based on the carboxylic acid functionalized reactive sites.

EXPERIMENTAL SECTION

Synthesis of Compound 1a. Resorcin 3a (86.0 mg, 0.78 mmol) and NaH (60% in mineral oil, 19.1 mg, 0.78 mmol) or triethylamine (0.3 mL) were placed in a flask containing DMF (2 mL), and the mixture was stirred at room temperature under nitrogen atmosphere for 10 min. Compound 2a (200.1 mg, 0.31 mmol) in DMF (1.0 mL) was introduced to the mixture via a syringe, and the reaction mixture was heated at 50 °C for 4 h. The solution was then removed under reduced pressure. The crude product was purified by silica gel flash chromatography using petroleum ether/CH₂Cl₂/MeOH (25: 25: 1) as eluent to give compound 1a as a blue-green solid (90.4 mg, yield 55.0%). ¹H NMR (400 MHz, CDCl₃): δ 1.41–1.45 (t, J = 7.2 Hz, 3H), 1.69 (s, 6H), 1.88–1.91 (m, 2H), 2.63–2.66 (t, J = 5.6 Hz, 2H), 2.69–2.72 (t, J = 5.6 Hz, 2H), 4.07–4.12 (q, J = 6.8 Hz, 2H), 5.92– 5.96 (d, J = 14.0 Hz, 1H), 6.97–7.00 (2H), 7.06–7.08 (d, J = 8.0 Hz, 1H), 7.19–7.23 (t, J = 7.6 Hz, 1H), 7.24–7.26 (d, J = 8.8 Hz, 1H), 7.35–7.39 (3H), 8.37–8.40 (d, I = 14.0 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 12.09, 20.75, 24.35, 28.39, 39.29, 48.92, 97.80, 103.01, 107.87, 109.87, 114.85, 115.04, 121.25, 121.45, 122.29, 124.57, 128.63, 129.35, 139.01, 139.79, 140.58, 141.89, 156.87, 162.32, 170.76. HRMS (ESI) m/z calcd for $C_{27}H_{28}NO_2$ (M⁺): 398.2115. Found: 398.2112

Synthesis of Compound 1b. To a solution of compound 1a (200.0 mg, 0.38 mmol) and iodoethane (592.8 mg, 3.80 mmol) in dry DMF (2.0 mL), Cs₂ CO₃ (248.0 mg, 0.76 mmol) was added. The mixture was stirred at room temperature for 1 h, and then the solvent was evaporated under reduced pressure to give the crude product, which was purified by silica gel flash chromatography using petroleum ethyl acetate/acetone (3:1) as eluent to give compound 1b as a blue solid (165.9 mg, 79.5%). ¹H NMR (400 MHz, CDCl₃): 1.40-1.48 (m, 6H), 1.74 (s, 6H), 1.87 (bs, 2H), 2.69 (bs, 4H), 4.11- 4.14 (q, J = 7.2 Hz, 2H), 4.40- 4.43 (q, J = 6.8 Hz, 2H), 6.30- 6.40 (dd, J = 14.8, 5.0 Hz, 1H), 6.76 (s, 1H), 6.77–6.84 (dd, 1H), 7.30–7.41 (m, 5H), 7.47– 7.49 (dd, J = 7.2, 2.0 Hz, 1H), 8.55–8.57 (d, J = 14.2 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 11.94, 13.65, 19.31, 23.67, 27.30, 28.16, 40.39, 49.56, 63.81, 100.21, 102.19, 111.42, 112.69, 113.92, 114.72, 121.69, 126.11, 126.21, 128.07, 128.26, 133.56, 140.02, 140.71, 144.59, 153.51, 161.09, 161.60, 175.38. HRMS (ESI) m/z calcd for C₂₉H₃₂NO₂⁺ (M⁺): 426.2428. Found: 426.2436.

Synthesis of Compound 1c. Route A (shown in Scheme 1): Resorcin **3a** (275.6 mg, 2.48 mmol) and triethylamine (0.3 mL) were placed in a flask containing DMF (2 mL), and the mixture was stirred at room temperature under nitrogen atmosphere for 10 min. Compound **2b** (400.0 mg, 0.83 mmol) in DMF (1.0 mL) was introduced to the mixture via a syringe, and the reaction mixture was heated at 50 °C for 5 h. The solution was then removed under reduced pressure. The crude product was purified by silica gel flash chromatography using petroleum ether/ethyl acetate (2:1) to CH_2Cl_2 /ethanol (1:0 to 50:3) as eluent to give compound **1c** as a blue-green solid (252.4 mg, yield 59.5%).

Journal of the American Chemical Society

Route B (shown in Scheme 3): Compound 1d (200.2 mg, 0.44 mmol) was placed in a flask containing anhydrous CH_2Cl_2 (3 mL), and the solution was stirred at 0 °C under nitrogen atmosphere for 30 min. BBr₃ (1 mL BBr₃ dissolved in 3 mL CH_2Cl_2) was slowly introduced to the mixture via a syringe, and the reaction mixture was warmed to room temperature and stirred at room temperature for 24 h. The mixture was added to a saturated NaHCO₃ solution (50 mL) and was extracted with CH_2Cl_2 (50 mL) three times. The organic phases were combined and dried by anhydrous MgSO₄. The solution was then removed under reduced pressure. The crude product was purified by silica gel flash chromatography using petroleum ether/ethyl acetate (2:1) to CH_2Cl_2 /ethanol (15:1) as eluent to give compound 1c as a blue-green solid (182.6 mg, yield 89.7%).

¹H NMR (500 MHz, CDCl_3): δ 1.67 (s, 6H), 1.87–1.92 (m, 2H), 2.62 (t, *J* = 6.0 Hz, 2H), 2.67 (t, *J* = 6.0 Hz, 2H), 3.36 (s, 3H), 4.07–4.12 (q, *J* = 7.2 Hz, 2H), 5.60 (d, *J* = 13.5 Hz, 1H), 6.58 (s, 1H), 6.78 (dd, *J* = 9.0, 1.5 Hz, 1H), 6.84 (d, *J* = 8.0 Hz, 1H), 7.05 (t, *J* = 8.0 Hz, 1H), 7.21 (d, *J* = 9.0 Hz, 1H), 7.26–7.29 (2H), 7.32(s, 1H), 8.08 (d, *J* = 13.0 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃): δ 21.34, 24.52, 27.96, 28.59, 29.70, 30.08, 47.98, 94.47, 103.61, 107.82, 116.36, 116.51, 116.71, 122.02, 122.29, 127.37, 128.13, 129.79, 132.43, 139.59, 140.06, 143.87, 159.02, 159.91, 166.07. HRMS (ESI) *m/z* calcd for C₂₆H₂₆NO₂⁺ (M⁺): 384.1958. Found: 384.1971.

Synthesis of Compound 1d. Route A (shown in Scheme 1): To a solution of compound 1c (200.0 mg, 0.39 mmol) and iodomethane (110.9 mg, 0.80 mmol) in dry DMF (2.0 mL), $Cs_2 CO_3$ (248.0 mg, 0.76 mmol) was added. The mixture was stirred at room temperature for 1 h, and then the solvent was evaporated under reduced pressure to give the crude product, which was purified by silica gel flash chromatography using petroleum/ethyl acetate (1:1) to $CH_2Cl_2/$ ethanol (15:1) as eluent to give compound 1d as a blue solid (167.5 mg, 81.6%).

Route B (shown in Scheme 3): To a solution of 2-hydroxy-4methoxybenzaldehyde 6 (1.0 g, 6.6 mmol) and cyclohexanone 7 (1.3 g, 13.2 mmol) in ethanol (50.0 mL) was added piperidine (0.6 mL) and acetic acid (0.2 mL). The mixture was heated and stirred at reflux condition for 12 h, and then the solvent was evaporated under reduced pressure to give a residue. The resulting residue was treated with Fisher aldehyde 5 (2.8 g, 14.0 mmol) in acetic anhydride (10 mL), and the mixture was heated and stirred at 50 °C for 8 h. Subsequently, the solvent was evaporated under reduced pressure to give the crude product which was further purified by silica gel flash chromatography using petroleum/ethyl acetate (3:1) to $CH_2Cl_2/ethanol$ (1: 0 to 15:1) as eluent to afford compound 1d as a blue solid (547.6 mg, 19.5%).

¹H NMR (400 MHz, CDCl₃): 1.82 (s, 6H), 1.91–1.97 (m, 2H) 2.74–2.77 (t, *J* = 6.0 Hz, 2H), 2.79–2.82 (t, *J* = 6.0 Hz, 2H), 3.98 (s, 3H), 4.04 (s, 3H), 6.49–6.53 (d, *J* = 14.8 Hz, 1H), 6.88–6.91 (2H), 7.29 (1H), 7.37–7.43 (3H), 7.46–7.51 (2H), 8.63–8.67 (d, *J* = 15.2 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 20.41, 24.85, 28.36, 29.32, 29.78, 34.50, 50.61, 56.60, 100.90, 104.36, 112.69, 113.49, 115.33, 115.89, 122.51, 127.32, 127.44, 128.99, 129.30, 134,19, 141.55, 142.27, 145.73, 154.62, 162.02, 163.24, 177.52; HRMS (ESI) *m/z* calcd for $C_{27}H_{28}NO_2^+$ (M⁺): 398.2115. Found: 398.2127.

Synthesis of Compound 1e. 4-chloro resorcin 3b (134.1 mg, 0.93 mmol) and triethylamine (0.3 mL) were placed in a flask containing DMF (2.0 mL), and the mixture was stirred at room temperature under nitrogen atmosphere for 10 min. Compound 2a (200.0 mg, 0.31 mmol) in DMF (1.0 mL) was introduced to the mixture via a syringe, and the reaction mixture was heated at 75 °C for 4 h. The solution was then removed under reduced pressure. The crude product was purified by silica gel flash chromatography using CH₂Cl₂/EtOH (50:1) as eluent to give compound 1e as a blue-green solid (60.7 mg, yield 35.0%). ¹H NMR (500 MHz, CDCl₃): δ 1.36-1.39 (t, J = 7.2 Hz, 3H), 1.67 (s, 6H), 1.89–1.92 (2H), 2.61–2.64 (t, J = 6.0 Hz, 2H), 2.68–2.70 (t, J = 6.0 Hz, 2H), 3.89–3.93 (q, J = 7.2Hz, 2H), 5.67–5.70 (d, J = 13.5 Hz, 1H), 6.77 (s, 1H), 6.88–6.89 (d, J = 8.0 Hz, 1H), 7.08–7.11 (t, J = 7.5 Hz, 1H), 7.29–7.33 (3H), 7.41 (s, 1H), 8.13–8.16 (d, J = 13.5 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃): δ 11.66, 21.19, 24.44, 28.07, 28.57, 38.24, 47.90, 94.74, 103.82, 108.23, 115.22, 115.72, 117.54, 122.24, 122.87, 127.26, 128.27, 134.45, 139.19,

139. 97, 142.70, 157.42, 160.57, 166.39. HRMS (ESI) m/z calcd for C₂₇H₂₇NO₂Cl (M⁺): 432.1725. Found: 432.1742.

Synthesis of Compound 1f. 3-aminophenol 3c (338.0 mg, 3.11 mmol) and compound 2a (197.8 mg, 0.31 mmol) were placed in a flask containing DMF (3.0 mL). After heating for 4 h at 80 °C under nitrogen, the solution was concentrated under reduced pressure. The resulting crude product was purified by silica gel flash chromatography using petroleum ether/CH2Cl2/MeOH (25:25:1) as eluent to give compound 1f as a red solid (105.6 mg, yield 65.2%). ¹H NMR (400 MHz, CDCl₃): δ 8.33–8.36 (d, J = 12.8 Hz, 1H), 7.63 (s, 1H), 7.49– 7.51 (d, J = 8.8 Hz, 1H), 7.41 (d, J = 2.4 Hz, 1H), 7.15–7.18 (m, 2H), 6.96-6.98 (dd, J = 8.8, 2.4 Hz, 1H), 6.84-6.88 (t, J = 7.2 Hz, 1H), 6.61–6.63 (d, J = 7.6 Hz, 1H), 5.54–5.58 (d, J = 12.8 Hz, 1H), 3.69– 3.74 (q, J = 7.2 Hz, 2H), 2.87–2.90 (t, J = 6.0 Hz, 2H), 2.76–2.78 (t, J = 5.6 Hz, 2H), 1.91–1.97 (m, 2 H), 1.71 (s, 6H), 1.24–1.28 (t, J = 6.8 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) 158.65, 157.89, 155.47, 147.82, 144.06, 139.59, 134.28, 128.44, 127.93, 127.51, 127.15, 124.07, 121.68, 121.43, 119.66, 117.79, 109.29, 105.88, 92.75, 46.00, 36.83, 30.48, 28.46, 26.51, 22.41, 10.99; HRMS (EI) m/z calcd for $C_{27}H_{28}N_2O_1$ [M–H] ⁺: 396.2196. Found: 396.2193.

Synthesis of Compound 1g. 3-methoxyaniline 3d (381.2 mg, 3.10 mmol) and compound 2a (200.5 mg, 0.31 mmol) were placed in a flask containing DMF (3.0 mL). After heating for 4 h at 150 °C under nitrogen, the solution was concentrated under reduced pressure. The resulting crude product was purified by silica gel flash chromatography using petroleum ether/CH2Cl2/MeOH (25:25:1) as eluent to give compound 1g as a red solid (81.6 mg; yield 48.9%). ¹H NMR (400 MHz, CDCl₃, TMS) δ 8.44 (d, J = 12.8 Hz, 1H), 7.58 (s, 1H), 7.47–7.49 (d, J = 8.8 Hz, 1H), 7.32 (s, 1H), 7.13–7.17 (m, 2H), 6.99-7.02 (m, 1H), 6.82-6.86 (m, 1H), 6.58-6.60 (d, J = 8.0 Hz, 1H), 5.56-5.59 (d, J = 13.2 Hz, 1H), 3.94 (s, 3H), 3.66-3.72 (m, 2H), 2.85 (t, J = 4.2 Hz, 2H), 2.76 (m, 2H), 1.87–1.92 (m, 2H), 1.77 (s, 6H), 1.24 (t, I = 4.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₂) 159.65, 157.48 155.47, 144.11, 139.16, 133.32, 129.90, 128.50, 127.51, 127.48, 125.24, 125.08, 121.80, 121.50, 119.29, 117.35, 107.69, 106.81, 105.62, 103.64, 100.76, 92.53, 55.26, 45.76, 36.61, 30.37, 28.60, 26.23, 22.32, 10.86. HRMS (EI) m/z calcd for $C_{28}H_{31}N_2O^+$ [M–H] ⁺: 410.2353. Found: 410.2344.

Synthesis of Compound NIR-H2O2. Compound 1e (110 mg, 0.226 mmol) and CsCO3 (130 mg,0.678 mmol) were dissolved in CH₂Cl₂. The mixture was stirred at room temperature for 10 min, and then compound 9 (180 mg, 0.678 mmol) was added. After overnight reaction, the solvent was removed under reduced pressure. The resulting residue was purified by a silica gel column (CH₂Cl₂/ $C_2H_5OH = 10:1$) to afford compound NIR- H_2O_2 as a blue solid (102.9 mg, isolated yield: 65.7%): ¹H NMR (500 Hz, MeOD): δ = 1.37-1.40 (t, J = 7.5 Hz, 3H), 1.7 (s, 6H), 1.8-1.82 (t, J = 6.0 Hz, 2H), 2.58–2.6 (t, J = 6 Hz, 2H), 2.62 –2.65 (t, J = 6 Hz, 2H), 4.30– 4.34 (d, J = 7 Hz, 2H), 5.25 (s, 2H), 6.41–6.44 (d, J = 15 Hz, 1H), 7.0 (s, 1H), 7.11 (s, 1H), 7.37–7.50 (6H), 7.59–7.6 (d, I = 7 Hz, 2H), 7.7-7.72(d, J = 7.5 Hz, 1H),8.54-8.57 (d, J = 14.0 Hz,1H). ¹³C NMR (125 Hz, MeOD): 10.22, 13.97, 19.6, 22.52, 26.00, 29.15, 31.14, 42.65, 53.24, 59.33, 71.78, 73.71, 103.89, 106.37, 112.19, 114.98, 116.88, 118.50, 122.60, 124.86, 128.32, 129.78, 130.12, 130.90, 131.34, 133.90, 136.45, 143.43, 144.84, 148.41, 155.06, 159.16, 163.10, 180.33. HRMS (ESI) m/z calcd for $C_{34}H_{34}*B_1Cl_1N_1O_4$ ([M]): 565.2300. Found: 565.2317.

Synthesis of Compound NIR-thiol. To a solution of compound **1a** (100.0 mg, 0.19 mmol) and 2,4-dinitrobenzenesulfonyl chloride (203.4 mg, 0.76 mmol) in dry CH_2Cl_2 (10 mL), $Cs_2 CO_3$ (30.1 mg, 0.091 mmol) was added. The mixture was stirred at room temperature for 30 min, and then the solvent was evaporated under reduced pressure to give the crude product, which was purified on a basic Al_2O_3 column eluted with CH_2Cl_2/C_2H_3OH (100:1 to 30:1) to yield compound **NIR-thiol** as a blue solid (85.9 mg, yield 60.0%). ¹H NMR (400 MHz, CDCl₃): δ 1.54–1.57 (t, 3H), 1.81 (s, 6H), 1.90 (2H), 2.72 (4H), 4.54–4.56 (q, *J* = 7.2 Hz, 2H), 6.64–6.68 (d, *J* = 15.2 Hz, 1H), 7.02–7.04 (2H), 7.21 (s, 1H), 7.37–7.39 (d, *J* = 8.4 Hz, 1H), 7.46–7.50 (2H), 7.51–7.57 (2H), 8.23 (d, *J* = 2.0 Hz, 1H), 8.26–8.29 (1H), 8.32–8.35 (d, *J* = 8.8 Hz, 1H), 8.38–8.40 (d, *J* = 8.8 Hz, 1H),

Journal of the American Chemical Society

8.60–8.66 2H), 8.68 (s, 1H). ¹³C NMR (125 MHz, CDCl₃): δ 13.16, 20.07, 24.11, 27.78, 28.93, 29.48, 41.69, 51.36, 106.68, 110.10, 113.31, 115.72, 118.23, 118.69, 120.52, 121.68, 122.74, 125.29, 127.42, 128.39, 128.81, 128.94, 129.46, 129.66, 130.91, 131.56, 131.86, 133.05, 134.39, 140.79, 142.48, 145.36, 146.60, 147.45, 148.21, 148.83, 149.49, 151.14, 152.92, 158.79, 167.79, 178.65. HRMS (ESI) m/z calcd for C₃₃H₄₀N₃O₈S⁺ (M⁺): 628.1748. Found: 628.1749.

Spectroscopic Studies of the Sensor NIR-H₂O₂. Superoxide (O_2^{--}) was added as solid KO₂. Hydroxyl radical and *tert*-butoxy radical (·O'Bu) were generated by reaction of Fe²⁺ with H₂O₂ or TBHP, respectively.^{21b} Nitric oxide (NO) was generated from DEA/ NONOate (stock solution 1 mM in 0.01 M NaOH).²⁹ Singlet oxygen (¹O₂) was generated from ClO⁻ and H₂O₂.³⁰ A stock solution of DEA/NONOate was prepared in 0.01 M NaOH solution. Various analytes represented by H₂O₂, NO₃⁻, NO₂⁻, HClO, O₂⁻⁻, ·OH, ¹O₂, CH₃COOOH, NO, Fe³⁺, GSH, TBHP, vitamin C, ·O'Bu were added to the solution of **NIR-H₂O₂** (final concentration, 1 μ M) in 0.1 M PBS, pH 7.4 (containing 1% DMSO). The resulting solution was kept at ambient temperature for 30 min, and then the fluorescence intensities were recorded with excitation at 690 nm.

Raw 264.7 Murine Macrophages Culture and Imaging Using NIR-H₂O₂. Raw 264.7 murine macrophages were obtained from a Xiangya hospital and cultured in Dulbecco's modified eagle medium (DMEM) supplemented with 10% FBS (fetal bovine serum) in an atmosphere of 5% CO₂ and 95% air at 37 °C. For detection of endogenously produced H₂O₂, the living RAW 264.7 macrophages were coincubated with PMA (1 μ g/mL), **NIR-H₂O₂** (1 μ M), Hoechst 33258 (4.5 μ M), and mito tracker green (1 μ M) for 60 min. Prior to imaging, the cells were washed 3× with 1 mL of PBS, and the fluorescence images were acquired through an Olympus fluorescence microscopy equipped with a cooled CCD camera.

Fluorescent Imaging in Living Mice Using NIR-H₂**O**₂. ICR mice, 20–25 g, were given an ip injection of LPS (1 mg in 400 μ L saline). After 4 h, the mice were anesthetized by an ip injection of xylazine (10 mg/kg) and ketamine (80 mg/kg), and the abdominal fur was removed with an electric shaver. Then, the mice were intraperitoneally injected with **NIR-H**₂**O**₂ (400 μ M in 400 μ L of 1:9 = DMSO:PBS). As a control, untreated (neither treated with **NIR-H**₂**O**₂ (400 μ M in 400 μ L of 1:9 = DMSO: PBS) were also prepared. The mice were then imaged (30 min after the injection of **NIR-H**₂**O**₂) by using a FMT 2500 LX quantitative tomography *in vivo* imaging system, with an excitation filter of 670 nm and an emission filter of 690–740 nm.

Bel 7702 Cells Incubation and Fluorescence Imaging Using NIR-thiol. Bel 7702 cells were cultured in DMEM supplemented with 10% FBS in an atmosphere of 5% CO₂ and 95% air at 37 °C. One day before imaging, the cells were seeded in 24-well flat-bottomed plates in an atmosphere of 5% CO₂, 95% air at 37 °C for 24 h. The cells were incubated with the sensor NIR-thiol (5 μ M) and Hoechst 33258 (4.5 μ M) for 30 min at 37 °C in PBS buffer (containing 1% DMSO) and then washed with PBS buffer 3×. For the control experiment, the cells were pretreated with PBS solution containing *N*-ethylmaleimide (1 mM) for 30 min, and then incubated with the sensor NIR-thiol (5 μ M) in PBS (containing 1% DMSO) for 30 min at 37 °C. Fluorescence imaging was then carried out after washing cells with PBS. Fluorescence imaging of intracelluar thiols was conducted using a Nikon eclipase TE300 inverted fluorescence microscope.

Fluorescent Imaging in Living Mice Using NIR-thiol. ICR mice, 20–25 g, were ip injected with a different amount of NIR-thiol (0, 20, 40, or 160 nanomoles) in 100 μ L of 1:3 = DMSO:PBS. Subsequently, the mice were anesthetized by ip injection of xylazine (10 mg/kg) and ketamine (80 mg/kg), and their abdominal fur was removed with an electric shaver. The mice were then imaged by using a FMT 2500 LX quantitative tomography *in vivo* imaging system, with an excitation filter of 670 nm and an emission filter of 690–740 nm.

ASSOCIATED CONTENT

S Supporting Information

Experimental procedures and some spectra. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

weiyinglin@hnu.edu.cn

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

Funding was partially provided by NSFC (20872032, 20972044, 21172063), NCET (08-0175), the Doctoral Fund of Chinese Ministry of Education (20100161110008), and the Fundamental Research Funds for the Central Universities, Hunan University.

REFERENCES

(1) (a) Lichtman, J. W.; Conchello, J. A. Nat. Methods 2005, 2, 910– 919. (b) Ghoroghchian, P. P.; Therien, M. J.; Hammer, D. A. Nanomed. Nanobiotechnol. 2009, 1, 156–167. (c) Valeur, B. Molecular Fluorescence: Principles and Applications; Wiley-VCH: Weinheim, Germany, 2001.

(2) For some reviews, see: (a) Loudet., A.; Burgess, K. Chem. Rev. 2007, 107, 4891–4932. (b) Goncalves., M. S. T. Chem. Rev. 2009, 109, 190–212. (c) Qian, X.; Xiao, Y.; Xu, Y.; Guo, X.; Qian, J.; Zhu, W. Chem. Commun. 2010, 46, 6418–6436.

(3) For some recent examples, see: (a) Qian, Y.; Karpus, J.; Kabil, O.; Zhang, S. Y.; Zhu, H. L.; Banerjee, R.; Zhao, J.; He, C. Nat. Commun. 2011, 2, 495. (b) Yang, Y.; Lowry, M.; Xu, X.; Escobedo, J. O.; Sibrian-Vazquez, M.; Wong, L.; Schowalter, C. M.; Jensen, T. J.; Fronczek, F. R.; Warner, I. M.; Strongin, R. M. Proc. Natl. Acad. Sci. U.S.A. 2008, 105, 8829-8834. (c) Palama, I.; DiMaria, F.; Viola, I.; Fabiano, E.; Gigli, G.; Bettini, C.; Barbarella, G. J. Am. Chem. Soc. 2011, 133, 17777-17785. (d) Liu, C.; Pan, J.; Li, S.; Zhao, Y.; Wu, L. Y.; Berkman, C. E.; Whorton, A. R.; Xian, M. Angew. Chem., Int. Ed. 2011, 50, 10327-10329. (e) Peng, X.; Yang, Z.; Wang, J.; Fan, J.; He, Y.; Song, F.; Wang, B.; Sun, S.; Qu, J.; Qi, J.; Yan, M. J. Am. Chem. Soc. 2011, 133, 6626-6635. (f) Sotgiu, G.; Galeotti, M.; Samor, C.; Bongini, A.; Mazzanti, A. Chem.—Eur. J. 2011, 17, 7947-7952. (g) Kim, E.; Koh, M.; Ryu, J.; Park, S. B. J. Am. Chem. Soc. 2008, 130, 12206-12207. (h) Peng, T.; Yang, D. Org. Lett. 2010, 12, 496-499. (i) Leevy, W. M.; Gammon, S. T.; Jiang, H.; Johnson, J. R.; Maxwell, D. J.; Jackson, E. N.; Marquez, M.; Piwnica-Worms, D.; Smith, B. D. J. Am. Chem. Soc. 2006, 128, 16476-16477. (j) Li, J.; Yao, S. Q. Org. Lett. 2009, 11, 405-408. (k) Hapuarachchige, S.; Montano, G.; Ramesh, C.; Rodriguez, D.; Henson, L. H.; Williams, C. C.; Kadavakkollu, S.; Johnson, D. L.; Shuster, C. B.; Arterburn, J. B. J. Am. Chem. Soc. 2011, 133, 6780-6790. (1) Yuan, L.; Lin, W.; Xie, Y.; Chen, B.; Zhu, S. J. Am. Chem. Soc. 2012, 134, 1305-1315.

(4) Ueno, T.; Nagano, T. Nat. Meth. 2011, 8, 642-645.

(5) For some reviews, see: (a) de Silva, A. P.; Gunaratne, H. Q. N.; Gunnlaugsson, T.; Huxley, A. J. M.; McCoy, C. P.; Rademacher, J. T.; Rice, T. E. Chem. Rev. 1997, 97, 1515–1566. (b) Nolan, E. M.; Lippard, S. J. Chem. Rev. 2008, 108, 3443–3480. (c) Que, E. L.; Domaille, D. W.; Chang, C. J. Chem. Rev. 2008, 108, 1517–1549. (d) Quang, D. T.; Kim, J. S. Chem. Rev. 2010, 110, 6280–6301. (e) Thomas, S. W., III; Joly, G. D.; Swager, T. M. Chem. Rev. 2007, 107, 1339–1386. (f) Han, J.; Burgess, K. Chem. Rev. 2010, 110, 2709–2728. (g) Kobayashi, H.; Ogawa, M.; Alford, R.; Choyke, P. L.; Urano, Y. Chem. Rev. 2010, 110, 2620–2640. (h) Chen, X.; Tian, X.; Shin, I.; Yoon, J. Chem. Soc. Rev. 2011, 40, 4783–4804. (i) Cho, D.-G.; Sessler, J. L. Chem. Soc. Rev. 2009, 38, 1647–1662. (j) Kim, H. N.; Lee, M. H.; Kim, H. J.; Kim, J. S.; Yoon, J. Chem. Soc. Rev. 2008, 37, 1465–1472. (k) Beija, M.; Afonso, C. A. M.; Martinho, J. M. G. Chem. Soc. Rev.

2009, 38, 2410–2433. (1) Chen, X.; Pradhan, T.; Wang, F.; Kim, J. S.; Yoon, J. *Chem. Rev.* **2012**, *112*, 1910–1956.

(6) For some books, see: (a) Demchenko, A. P. Introduction to Fluorescence Sensing; Springer: New York, 2008. (b) Wang, B.; Anslyn., E. V. Chemosensors: Principles, Strategies, and Applications; Wiley: Hoboken, NJ, 2011.

(7) For some books and reviews, see: (a) Near-Infrared Applications in Biotechnology;Raghavachari, R., Ed.; Marcel Dekker: New York, 2001. (b) Weissleder, R. Nat. Biotechnol. 2001, 19, 316–317. (c) Frangioni, J. V. Curr. Opin. Chem. Biol. 2003, 7, 626–634. (g) Escobedo, J. O.; Rusin, O.; Lim, S.; Strongin, R. M. Curr. Opin. Chem. Biol. 2010, 14, 64–70. (h) Hilderbrand, S. A.; Weissleder, R. Curr. Opin. Chem. Biol. 2010, 14, 71–79.

(8) For some examples, see: (a) Fischer, G. M.; Daltrozzo, E.; Zumbusch, A. Angew. Chem., Int. Ed. 2011, 50, 1406-1409. (b) Fischer, G. M.; Ehlers, A. P.; Zumbusch, A.; Daltrozzo, E. Angew. Chem., Int. Ed. 2007, 46, 3750-3753. (c) Qin, W.; Ding, D.; Liu, J.; Yuan, W. Z.; Hu, Y.; Liu, B.; Tan, B. Z. Adv. Funct. Mater. 2012, 22, 771-779. (d) Umezawa, K.; Nakamura, Y.; Makino, H.; Citterio, D.; Suzuki, K. J. Am. Chem. Soc. 2008, 130, 1550-1551. (e) Baumes, J. M.; Gassensmith, J. J.; Giblin, J.; Lee, J.-J.; White, A. G.; Culligan, W. J.; Leevy, W. M.; Kuno, M.; Smith, B. D. Nat. Chem 2010, 2, 1025-1030. (f) Bürckstümmer, H.; Kronenberg, N. M.; Meerholz, K.; Würthner, F. Org. Lett. 2010, 12, 3666-3669. (g) Bouit, P.; Piazza, E. D.; Rigaut, S.; Guennic, B. L.; Aronica, C.; Toupet, L.; Andraud, C.; Maury, O. Org. Lett. 2008, 10, 4159-4162. (h) Toutchkine, A.; Nguyen, D.-V.; Hahn, K. M. Bioconjugate Chem. 2007, 18, 1344-1348. (i) McDonnell, S. O.; O'Shea, D. F. Org. Lett. 2006, 8, 3493-3496. (j) Kundu, K.; Knight, S. F.; Willett, N.; Lee, S.; Taylor, W. R.; Murthy, N. Angew. Chem., Int. Ed. 2009, 48, 299-303. (k) Descalzo, A. B.; Xu, H.-J.; Xue, Z.-L.; Hoffmann, K.; Shen, Z.; Weller, M. G.; You, X.-Z.; Rurack, K. Org. Lett. 2008, 10, 1581-1584. (1) Bai, M.; Achilefu, S. Bioorg. Med. Chem. Lett. 2011, 21, 280-284. (m) Zhang, Z.; Berezin, M. Y.; Kao, J. L. F.; d'Avignon, A.; Bai, M.; Achilefu, S. A. Angew. Chem., Int. Ed. 2008, 47, 3584-3587. (n) Yuan, L.; Lin, W.; Yang, Y.; Chen, H. J. Am. Chem. Soc. 2012, 134, 1200-1211. (o) Olivier, J.-H.; Widmaier, J.; Ziessel, R. Chem.-Eur. J. 2011, 17, 11709-11714.

(9) For some examples, see: (a) Sasaki, E.; Kojima, H.; Nishimatsu, H.; Urano, Y.; Kikuchi, K.; Hirata, Y.; Nagano, T. *J. Am. Chem. Soc.* **2005**, *127*, 3684–3685. (b) Kiyose, K.; Aizawa, S.; Sasaki, E.; Kojima, H.; Hanaoka, K.; Terai, T.; Urano, Y.; Nagano, T. *Chem.—Eur. J.* **2009**, *15*, 9191–9200.

(10) For some reviews and examples, see: (a) Reymond, J. L.; Fluxà, V. S.; Maillard, N. Chem. Commun. 2009, 34–46. (b) Song, F.; Garner, A. L.; Koide, K. J. Am. Chem. Soc. 2007, 129, 12354–12355. (c) Kamiya, M.; Kobayashi, H.; Hama, Y.; Koyama, Y.; Bernardo, M.; Nagano, T.; Choyke, P. L.; Urano, Y. J. Am. Chem. Soc. 2007, 129, 3918–3929. (d) Lavis, L, D.; Raines, R. T. ACS Chem. Biol. 2008, 3, 142–155. (e) Huang, S.-T.; Teng, C.-J.; Lee, Y.-H.; Wu, J.-Y.; Wang, K.-L.; Lin, C.-M. Anal. Chem. 2010, 82, 7329–7334. (f) Lavis, L. D.; Chao, T.-Y.; Raines, R. T. Chem. Sci. 2011, 2, 521–530. (g) Taki, M.; Iyoshi, S.; Ojida, A.; Hamachi, I.; Yamamoto, Y. J. Am. Chem. Soc. 2010, 132, 5938–5939. (h) Chen, X.; Sun, M.; Ma, H. Curr. Org. Chem. 2006, 10, 477–489. (i) Razgulin, A.; Ma, N.; Rao, J. Chem. Soc. Rev. 2011, 40, 4186–4216.

(11) Wolinska, E.; Henary, M.; Paliakov, E.; Strekowski, L. J. *Heterocycl. Chem.* **2009**, *46*, 925–930.

(12) The pK_a was calculated according to the Henderson-Hasselbach-type mass action equation $(\log[(F_{max} - F)/(F - F_{min})] = pK_a - pH)$.

(13) (a) Bouit, P.-A.; Aronica, C.; Toupet, L.; Guennic, B. L.; Andraud, C.; Maury, O. J. Am. Chem. Soc. 2010, 132, 4328-4335.
(b) Würthner, F.; Archetti, G.; Schmidt, R.; Kuball, H.-G. Angew. Chem., Int. Ed. 2008, 47, 4529-4532.

(14) (a) Valeur, B. Molecular Fluorescence: Principles and Applications, Wiley-VCH: Weinheim, Germany, 2001. (b) Magde, D.; Rojas, G. E.; Seybold, P. Photochem. Photobiol. **1999**, 70, 737–744. (c) Oushiki, D.; Kojima, H.; Terai, T.; Arita, M.; Hanaoka, K.; Urano, Y.; Nagano, T. J. Am. Chem. Soc. **2010**, 132, 2795–2801. (15) (a) Champagne, B.; Guillaume, M.; Zutterman, F. Chem. Phys. Lett. 2006, 425, 105–109. (b) Benzi, C.; Bertolino, C. A.; Miletto, I.; Ponzio, P.; Barolo, C.; Viscardi, G.; Coluccia, S.; Caput, G. Dyes and Pigments 2009, 83, 111–120.

(16) (a) Bashan, N.; Kovsan, J.; Kachko, I.; Ovadia., H.; Rudich, A. *Physiol. Rev.* **2009**, 89, 27–71. (b) Kuznetsov, A. V.; Kehrer, I.; Kozlov, A. V.; Haller, M.; Redl, H.; Hermann, M.; Grimm, M.; Troppmair, J. *Anal. Bioanal. Chem.* **2011**, 400, 2383–2390. (c) Pandey, A. N.; Tripathi, A.; PremKumar, K. V.; Shrivastav, T. G.; Chaube, S. K. *J. Cell. Biochem.* **2010**, 111, 521–528. (d) Peyrot, F.; Ducrocq, C. *J. Pineal Res.* **2008**, 45, 235–246. (e) Rhee, S. G. *Science.* **2006**, 312, 1882–1883. (f) Reth, M. *Nat. Immun.* **2002**, 3, 1129–1134. (g) Rhee, S. G. *Exp. Mol. Med.* **1999**, 31, 53–59. (h) Stone, J. R.; Yang, S. *Antioxid. Redox Signaling* **2006**, 8, 243–270.

(17) (a) Winterbourn, C. C. Nat. Chem. Biol. 2008, 4, 278-286.
(b) Paulsen, C. E.; Carroll, K. S. ACS Chem. Biol 2010, 5, 47-62.
(c) Miller, E. W.; Dickinson, B. C.; Chang, C. J. Proc. Natl. Acad. Sci. U.S.A. 2010, 107 (36), 15681-15686. (d) D'Autréaux, B.; Toledano, M. B.. Nat. Rev. Mol. Cell. Biol. 2007, 8, 813-824.

(18) Galaris, D.; Skiada, V.; Barbouti, A. *Cancer Lett.* **2008**, 266, 21–29.

(19) Lin, M. T.; Beal, M. F. Nature 2006, 443, 787-795.

(20) For some reviews, see: (a) Miller, E. W.; Chang, C. J. Curr. Opin. Chem. Biol. 2007, 11, 620–625. (b) Chen, X.; Tian, X.; Shin, I.; Yoon, J. Chem. Soc. Rev. 2011, 40, 4783–4804. (c) McQuade, L. E.; Lippard, S. J. Curr. Opin. Chem. Biol. 2010, 14, 43–49. (d) Lippert, A. R.; Van De Bittner, G. C.; Chang, C. J. Acc. Chem. Res. 2011, 44, 793–804.

(21) For some recent examples, see: (a) Dickinson, B. C.; Huynh, C.; Chang, C. J. J. Am. Chem. Soc. **2010**, *132*, 5906–5915. (b) Srikun, D.; Miller, E. W.; Domaille, D. W.; Chang, C. J. J. Am. Chem. Soc. **2008**, *130*, 4596–4597. (c) Abo, M.; Urano, Y.; Hanaoka, K.; Terai, T.; Komatsu, T.; Nagano, T. J. Am. Chem. Soc. **2011**, *133*, 10629–10637. (d) Du, L.; Ni, N.; Li, M.; Wang, B. Tetrahedron Lett. **2010**, *51*, 1152– 1154. (e) Xu, K. H.; Liu, F.; Wang, H. X.; Wang, S. S.; Wang, L. L.; Tang, B. Sci China Ser B-Chem **2009**, *52*, 734–740. (f) Karton-Lifshin, N.; Segal, E.; Omer, L.; Portnoy, M.; Satchi-Fainaro, R.; Shabat, D. J. Am. Chem. Soc. **2011**, *133*, 10960–10965. (g) Chung, C.; Srikun, D.; Lim, C. S.; Chang, C. J.; Cho, B. R. Chem. Commun **2011**, *47*, 9618– 9620.

(22) Li, H.; Li, Q.; Wang, X.; Xu, K.; Chen, Z.; Gong, X.; Liu, X.; Tong, L.; Tang, B. Anal. Chem. 2009, 81, 2193-2198.

(23) Lee, D.; Khaja, S.; Velasquez-Castano, J. C.; Dasari, M.; Sun, C.; Petros, J.; Taylor, W. R.; Murthy, N. *Nat. Mater.* **2007**, *6*, 765–769.

(24) Beiser, A.; Selhub, J.; Jacques, P. F.; Rosenberg, I. H.; D'Agostino, R. B.; Wilson, P. W. F..; Wolf, P. A. N. Engl. J. Med. **2002**, 346, 476–483.

(25) Ball, R. O.; Courtney-Martin, G.; Pencharz, P. B. J. Nutr. 2006, 136, 1682S-1693S.

(26) For a review and some examples, see: (a) Chen, X.; Zhou, Y.; Peng, X.; Yoon, J. Chem. Soc. Rev. **2010**, 39, 2120–2135. (b) Sreejith, S.; Divya, K. P.; Ajayaghosh, A. Angew. Chem., Int. Ed. **2008**, 47, 7883. (c) Zhang, M.; Yu, M.; Li, F.; Zhu, M.; Li, M.; Gao, Y.; Li, L.; Liu, Z.; Zhang, J.; Zhang, D.; Yi, T.; Huang, C. J. Am. Chem. Soc. **2007**, 129, 10322. (d) Jung, H. S.; Han, J. H.; Pradhan, T.; Kim, S.; Lee, S. W.; Sessler, J. L.; Kim, T. W.; Kang, C.; Kim, J. S. Biomaterials **2012**, 33, 945. (e) Chen, Y.; Zhao, J.; Guo, H.; Xie, L. J. Org. Chem. **2012**, 77, 2192–2206.

(27) Maeda, H.; Matsuno, H.; Ushida, M.; Katayama, K.; Saeki, K Angew. Chem., Int. Ed. **2005**, 44, 2922–2925.

(28) Mosmann, T. J. Immunol. Meth. 1983, 65, 55-63.

(29) Zhang, X.; Kim, W.-S.; Hatcher, N.; Potgieter, K.; Moroz, L. L.; Gillette, R.; Sweedler, J. V. J. Biol. Chem. 2002, 277, 48472-48478.

(30) Tang, B.; Zhang, N.; Chen, Z.; Xu, K.; Zhuo, L.; An, L.; Yang, G. *Chem.—Eur. J.* **2008**, *14*, 522–528.